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Protein-protein interactions, resulting in transient or long-lived 0
homo- or heterooligomers, play an essential role in many biological 2 i F toU
functions but sometimes also result in disebseThus, revealing , A A
the dynamic principles for proteirprotein assembly, and how it 4
may couple to protein-structural changes, is crucial for the x% % i \
understanding of protein signaling, function, malfunction, and drug s U, to7xU
design. Proposed mechanisms for formation of oligomeric proteins 8
include “induced-fit” (i.e., flexible recognition), “lock-and-key” (i.e., _1(’
rigid-body docking), and “conformational-selection” (i.e., recogni- r F_toU_(inurea)
tion of preselected conformers) scenafids’ While these three 2 '1 : '2 : '3 : “‘ —

mechanisms assume the presence of almost completely folded
monﬁmgrs before assocllatlon, agmeLPOSSIbIIItY’ the “fly ce_lgtlng " Figure 1. Semi-log plot of cpnl0 unfolding/dissociation kinetics as a
mechanism was recently prc_)po this s_cenarlo, recognition function of the GUHCI concentratici. (M) wild-type fluorescence, fast
between unfolded polypeptides results in enhanced speed ofphase; i) wild-type fluorescence, slow phas&)(Phe90Trp fluorescence;
assembly since it provides a greater capture radius than that of a(®) wild-type CDys0 nni (4) wild-type CD17 nm slow phase; fast CR7 nm
folded protein. However, subsequent simulations on a large set of_”%t_ Srlo‘c’j"”- For comparison, extrapolatedks for F7—Uy in ure&® is
dimers demonstrated that a strong “fly casting” effect was only indicated.

detected for one protethsuggesting this scenario to be rare. are strongly protein-concentration dependémmplete Chevron

The ho_moheptamerlc co-ghaperonln_ protein 10 (cph1d)s _ plots are unfeasible; therefore, we have focused on the unfolding/
an attractive model for studies of the interplay between folding dissociation side

and assembly when the molecularity is high (i.e., seven). Cpn10
(GroES inEscherichia coli normally functions as the cap to cpn60
(GroEL in E. coli) in which substrate folding is facilitated.In
addition, human mitochondrial cpn10 is identical to an immuno-
suppressive growth factor found in maternal seférand it is

GuHCI concentration (M)

The kinetics of cpn10 unfolding/disassembly induced by GuHCI
was probed by manual and stopped-flow mixing experiménts.
Progress of the reaction was monitored by far-UV CD and aromatic
fluorescence, tools previously applied in equilibrium experimé&hts.

. . . . ) The kinetics is biexponential when measured by tyrosine fluores-
overexpressed during carcinogen&siand in several protein- cence (30% of amplitude, fast phase; rest in slow phase) and
misfolding disease¥ The structure of cpnl0 appears conserved CDy17 o (>55% amplitude ’in fast phasé; rest in slow phase), but
?n all organisms: in the heptamer, each cpnl_O monomer adopts ansingle-exponential (only slow phase) when probed by,GEh
|rregul.ar ﬁ-barrel ‘ topology. .'I.'he domlqant |nterfact|on betwepn (Figure 1). While CB:7 nmprobes secondary structure, both tyrosine
subunits |'s an antlpargllel pairing of the fifsstrand in one subunit fluorescence and GBynm report on tertiary interactions near
and the flnal_ﬁ-strand in the other__suburiﬁ. . . cpnl0’s three tyrosines; since these are situated on, or near, the

The majority of the overall %’tab'“ty Of_ the human mitochondrial interfaces, interprotein interactions dominate the latter sigédls.
cpn10 heptamer comes from mterface mte_racti’émspnl_o_mono-_ directly isolate the unfolding step, we used a cpnl0 variant with a
mers can ado_p_t fqlded struc_tures in solutl_on but exhibit mgrglnal tryptophan engineered into the core (Phe90Trp) that specifically
stability 1° Equilibrium unfolding of cpn10, induced by guanidine senses polypeptide unfoldiAgFor this variant, which has wild-
hydrc_Jchloride (GuH_CI) or heat, is a reversible, apparent twq-state type stability® there is only a fast fluorescence phase. Taken
reaction that results in unfolded monom&e contrast, non-native  y,oether the data demonstrate that the first phase is an unfolding
heptamers become populated when urea is used as dend®fant. o (i e F— U;), whereas the second step involves disassembly
We here address the presence of such a non-native species on th@oupled to unfolding of the interfagéstrands (i.e., ¥— 7 x U).
kinetic free-energy landscape that connects folded heptamers with), 5corq with mechanistic reversibility, kinetic refolding/assembly
unfolded monomers. Since the GuHCI-induced equilibrium curves experiments at a few accessible GUHCI concentrations are also

biexponential processes.
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Figure 2. (Top) MD snapshots of cpn10 heptamer heafih@ottom)

Secondary structure analysis of interfaces (dashed and solid lines; N- and

C-terminal interfaces, respectively) and interior (dotted line) in a representa-
tive monomer as a function of simulation time (temperature). Curves were

smoothed by taking averages of 100 1-ps frames. Same trends are observed

for all monomers. The initial drop (in dotted line) is due to the dynamic
equilibration at 298 K.

end of the 10-ns simulation, do the interfaces break apart, resulting

in complete denaturation (Figure 2 and Supporting Information
(S1).

The qualitative agreement between MD simulations and time-
resolved spectroscopy, together with apparent reversibility of the

oligomers with molecularity of twd(iii) Our understanding of the
importance of unfolded proteins in the cell is constantly grovf#§.

In the case of cpn10, interfaces that are in principle “glued together”
may be a requirement to ensure efficient cycling on and off the
cpn60 oligomer. (iv) Finally, coupling between folding and binding
could allow cpn10 to interact with many targets. Such “fly casting”
interactions may facilitate cpnl10'’s roles in pregnancy and disease,
for which little is known.
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